Rrjetet e Sensorëve Wireless

PhD. C. Lamir Shkurti

Shembuj të përdorimit të MKR1000

Përmbajtja

Çka janë dhe pse përdoren mikrokontrollerët3
MKR1000
Çka është MKR10003
Specifikimet teknike4
Përdorimi i MKR1000 në Arduino Software (IDE)7
Shembulli i parë me MKR10008
Shembuj me MKR1000 dhe SensorKit10
Ndërprerësi me buton10
LED-i RGB13
Sensori i dritës15
Sensori i flakës16
Sensori i lagështisë dhe temperaturës18
Detyrë20
Përdorimi i Blynk21
Monitorimi i temperaturës dhe lagështisë së ajrit nëpërmjet telefonit
Dërgimi i të dhënave në bazën e të dhënave nëpërmjet një Ueb API nga pajisja MKR1000
Krijimi i bazës së të dhënave në MySQL31
Marrja e të dhënave nga baza e të dhënave nëpërmjet një Ueb API dhe komandimi i pajisjes MKR1000 nga të dhënat e marura
Përdorimi i MKR 1000 si një Ueb Server44
Përdorimi i JWT(JSON Web Token) për të siguruar shkëmbimin e të dhënave në mënyrë të sigurt 49

Çka janë dhe pse përdoren mikrokontrollerët

Mikrokontrolleri është një kompjuter i vogël në një qark të integruar. Mikrokontrollërat janë pajisje elektronike të përdorura për të kryer një sërë detyrash automatizuese dhe kontrolluese në pajisje dhe sisteme të ndryshme. Një mikrokontroller përmban një ose më shumë CPU(Precessor cores) së bashku me memorien e programueshme dhe pjesët periferike hyrëse dhe dalëse.

Mikrokontrollerët kryesisht përdoren në kontrollimin e automatizimit të produkteve të ndryshme, sikurse sistemet e kontrollit të motorëve automobilistikë, pajisjet mjekësore, telekomandat, pajisjet, mjetet e rrymës, lodra e të tjera.

IoT (Interneti i Gjërave): Në kontekstin e IoT, mikrokontrollërat janë thelbësore. Ata ndihmojnë pajisjet të komunikojnë me njëra-tjetrën dhe të mbledhin dhe dërgojnë të dhëna nëpërmjet internetit. Kjo është e rëndësishme për zhvillimin e smart cities, smart homes dhe aplikacioneve të tjera të ndërlidhura.

MKR1000

Çka është MKR1000

MKR1000 është një pllakë zhvillimore e cila në vete përmban një mikrokontroller e dizajnuar për të ofruar një zgjidhje të lehtë dhe pak të kushtueshme për të gjithë ata që dëshirojnë të merren me sensor, aktuatorë dhe lidhje të lehtë me Wi-Fi pavarësisht eksperiencës së tyre në programimin e mikrokontrollerëve.

Përdorimi i WiFi: MKR1000 është një mikrokontroller i pajisur me një modul WiFi të integruar, që e bën të mundur lidhjen me rrjetet pa tel. Kjo e bën të përshtatshëm për projekte IoT (Interneti i Gjërave), ku lidhja në internet është e rëndësishme.

MKR1000 programohet duke përdorur Arduino Software (IDE – *integrated development environment*). Gjithashtu për ta programuar MKR1000 përdorim gjuhën programuese C dhe C++, sintaksën dhe mënyrën e shkrimit të kësaj gjuhe mund ta gjeni në internet por mënyra më e mirë për ta mësuar është përmes shembujve dhe ushtrimeve të ndryshme.

MKR1000 është bazuar në procesorin ARM Cortex-M0, i cili ofron një performancë të mirë dhe shpejtësi të lartë të procesimit.

MKR1000 është dizajnuar për të punuar një bateri dhe ka efikasitet të lartë të energjisë, duke e bërë të përshtatshëm për aplikacionet në terren dhe në ambientet pa rrjet elektrik të qëndrueshëm. MKR1000 është pajisur me një portë USB për programim duke e bërë të lehtë për të komunikuar me kompjuterin dhe për të ngarkuar kodin.

Microcontroller	SAMD21 Cortex-M0+ 32bit low power ARM MCU
Board Power Supply (USB/VIN)	5V
Supported Battery(*)	Li-Po single cell, 3.7V, 700mAh minimum
Circuit Operating Voltage	3.3V
Digital I/O Pins	8
PWM Pins	12 (0, 1, 2, 3, 4, 5, 6, 7, 8, 10, A3 - or 18 -, A4 -or 19)
UART	1
SPI	1
12C	1
Analog Input Pins	7 (ADC 8/10/12 bit)
Analog Output Pins	1 (DAC 10 bit)
External Interrupts	8 (0, 1, 4, 5, 6, 7, 8, A1 -or 16-, A2 - or 17)
DC Current per I/O Pin	7 mA
Flash Memory	256 KB
SRAM	32 KB
EEPROM	no

Specifikimet teknike

Clock Speed	32.768 kHz (RTC), 48 MHz
LED_BUILTIN	6
Full-Speed USB Device and embedded Host	
Length	61.5 mm
Width	25 mm
Weight	32 gr.

ARDUINO MKR WIFI 1000

MKR1000 ka një numër të caktuar portesh dhe pinash që mund të përdoren për lidhjen me komponentë të ndryshëm. Këtu janë disa nga pinat kryesore të MKR1000 dhe shpjegime të shkurtra për secilin prej tyre:

VIN: Pini i tensionit hyrës. Ky pini mund të përdoret për të furnizuar tensionin e nevojshëm për MKR1000 nga një burim tensioni të jashtëm.

5V: Pini i tensionit 5V. Ky pini furnizon tensionin 5V, mund të përdoret për të dhënë energji për pajisje të jashtme.

3.3V: Pini i tensionit 3.3V. Ky pini furnizon tensionin 3.3V për pajisjet që operojnë me këtë nivel tensioni.

GND: Pini i përbashkët për të lidhur pajisjet me tokën- pini negativ.

Digital I/O Pins: Ka disa porta I/O (Input/Output) digitale që mund të përdoren për të lexuar ose kontrolluar një nivel tensioni digital.

Analog Input Pins: Ka disa porta për leximin e vlerave analoge nga sensorë analogë.

PWM Pins: Ka porta me shtrirje modulacioni që mund të përdoren për të kontrolluar intensitetin e dritës, shpejtësinë e një motori.

Serial Communication Pins (RX, TX): Pini i pranimit (RX) dhe pini i dërgimit (TX) përdoren për komunikim serial me pajisje të tjera.

SPI, I2C, UART Pins: Ka porta dedikuar për protokollet e komunikimit të ndryshme si SPI, I2C, dhe UART, që mund të përdoren për lidhjen me pajisje të ndryshme.

Përdorimi i MKR1000 në Arduino Software (IDE)

Së pari për ta përdorur MKR1000 në Arduino Software (IDE), duhet të shkarkoni aplikacionin e arduinos për programim (Arduino Software). Dhe për ta bëre këtë së pari shkoni në faqen <u>arduino.cc</u> në internet, shkoni të opsioni Software dhe në nënmeny zgjidhni Downloads. Pastaj nëse jeni përdorues i sistemit operativ Windows zgjidhni opsionin e parë në të majtë Windows <u>Installer</u>, for windows XP and up, kjo do të ju drejtoj të një faqe tjetër ku ju duhet të zgjidhni opsionin "*JUST DOWNLOAD*", ose nëse ndokush nga ju është i interesuar që të kontribuoj në projektin e arduinos me mjete financiare mund ta zgjedhë opsionin "*CONTRIBUTE & DOWNLOAD*" dhe të vazhdoj procedurat tjera.

Pasi ta keni shkarkuar file-in vetëm klikoni mbi të dhe Arduino IDE do të jetë e instaluar. Pas këtyre hapave, duhet të vazhdoni duke instaluar libraritë e kërkuara për MKR1000.

Nëse dëshirojmë që ta përdorim MKR1000 ne Arduino IDE së pari duhet të instalojmë Atmel SAMD Core në të. Kjo është një procedurë e thjeshtë :

>Tools menu -> Boards -> Boards Manager

Vetëm kërkoni për MKR1000 ose Atmel SAMD Core dhe rezultati do të jetë i njëjtë. Vetëm klikoni butonin instalo dhe gjithçka do të jetë në rregull.

airsta File Ed	tion2 Arduino IDE 2.2.1 it Sketch Tools Help	🚥 Boards Manager	×
	Arduino MKR1000 Arduino MKR1000 Arduino MKR100 Arduino MKR1000 Arduino MKR1000 Arduino MKR1000 Arduino MKR1000	Type Arduino Filter your search Arduino AVR Boards Built-In by Arduino version 1.6.12 INSTALLED Boards included in this package: Arduino Yün, Arduino/Genuino Uno, Arduino Diecimila, Arduino Nano, Arduino/Genuino Mega, Arduino MegaADK, Arduino Leonardo, Arduino/Genuino Micro, Arduino Esplora, Arduino Mini, Arduino Ethernet, Arduino Fio, Arduino BT, Arduino LilyPadUSB, Arduino Lilypad, Arduino Pro, Arduino ATMegaNG, Arduino Robot Control, Arduino Robot Motor, Arduino Gemma. Online help More info	^
ų	More info	Arduino SAM Boards (32-bits ARM Cortex-M3) by Arduino Boards included in this package: Arduino Due. Online help More info	_
		Arduino SAMD Boards (32-bits ARM Cortex-M0+) by Arduino Boards included in this package: Arduino/Genuino Zero, Arduino/Genuino MKR1000. Online help More info 1.6.6 V Install	
8		Clo	ise

Nëse keni probleme me instalim të drivera-ve, d.m.th. sistemi operativ i juaji nuk e njeh MKR1000 atëherë shkoni te faqja :

https://www.arduino.cc/en/Guide/MKR1000

te kapitulli për instalim të driver-ve i gjeni të gjitha instruksionet se si të procedoni.

Shembulli i parë me MKR1000

Së pari do të përdorim një shembull të thjeshtë për blinkimin e një LED-i i cili mund të gjendet i gatshëm pasi ta hapni IDE për Arduino.

Shkoni në File > Examples > 01.Basics > Blink

🚥 Bli	∞ Blink Arduino 1.8.0							
File Ed	File Edit Sketch Tools Help							
Ne Op	ew Den	Ctrl+N Ctrl+O						
Op Sk	oen Recent etchbook	:	>			_		
Ex	amples	;	>	Δ				
Clo Sa	ose ve	Ctrl+W Ctrl+S		01.Basics	>		AnalogReadSerial	one se
Sa	ve As	Ctrl+Shift+S		02.Digital 03 Analog	>		BareMinim um Blink	
Pa	ge Setup	Ctrl+Shift+P		04.Communication	>		DigitalReadSerial	ol. O
Pri	int	Ctrl+P	_	05.Control	>		Fade	PTH 0
Pre	eferences	Ctrl+Comma		06.Sensors	>	bn	ReadAnalogVoltage	s used
				0/ DISDIAV	/			

Pas këtij veprimi duhet të zgjedhim board-in me të cilin jemi duke punuar. Shkojmë te **Tools > Board** dhe zgjedhim MKR1000.

∞ Blink Ardui	no 1.6.10	- 0			
File Edit Sketch	Tools Help				
Blink	Auto Format Ctrl+T Archive Sketch Fix Encoding & Reload				
1 /* Serial Monitor Ctrl+Maiusc 2 Blink Serial Plotter Ctrl+Maiusc 3 Turns Ctrl+Maiusc Ctrl+Maiusc		M			
4	WiFi101 Firmware Updater				
5 Most A 6 Leonar	Board: "Arduino/Genuino MKR1000"	A Boards Manager			
7 pin th 8 the do	Get Board Info	Arduino SAMD (32-bits ARM Cortex-M0+) Boards			
9 10 This e	Programmer: "Atmel EDBG"	Arduino/Genuino Zero (Native USB Port)			
11	Burn Bootloader	Arduino/Genuino MKR1000			
12 modifi	ed 8 May 2014	Arduino AVR Boards			

Pasi të zgjedhim board-in duhet të zgjedhim portin me të cilin do të komunikojmë përmes USB me MKR1000. Shkojmë te **Tools > Port >** dhe zgjedhim portin i cili përveç numrit të portit përmban edhe emrin e board-it ton MKR1000.

👓 Bli	ink Arduii	no 1.6.10		
File Ed	lit Sketch	Tools Help		
Blink		Auto Format Archive Sketch Fix Encoding & Reload	Ctrl+T	
1 / [,] 2 3	* Blink Turns	Serial Monitor Serial Plotter	Ctrl+Maiusc+M Ctrl+Maiusc+L	one second, repeatedly.
4 5	Most A	WiFi101 Firmware Updater		rol. On the Uno and
6	Leonar	Board: "Arduino/Genuino MKR1000"	>	woulto uncuro what
7	pin th	Port	>	Serial ports
8	the do	Get Board Info		COM18 (Arduino/Genuino MKR1000)
9 10 11	This e	Programmer: "Atmel EDBG" Burn Bootloader	>	
12	modifi	ed 8 May 2014		

Tani çka na mbetet është që ta ngarkojmë kodin tonë në board duke klikuar butonin Upload.

Pasi të prekim këtë buton mund të shihni LED-at e TX dhe RX që blinkojnë dhe na tregojnë që board-i dhe kompjuteri janë duke komunikuar. Pasi ngarkimi i kodit të jetë përfunduar mesazhi *Done uploading* do të paraqitet në status bar.

Disa sekonda pasi ngarkimi i kodit të përfundoj ju mund të shihni duke blinkuar (ndalet dhe ndezët) LEDin i cili është në pllakë i shënjuar me shigjetë të kuqe në foton më poshtë. Nëse kjo ndodhë atëherë ju keni arritur me sukses të bëni projektin e parë me MKR1000.

Shembuj me MKR1000 dhe SensorKit

Duhet pasur kujdes me lidhjen e të gjitha moduleve në MKR1000 sepse përndryshe nga Arduino UNO **pinat që kontrollojmë në MKR1000 punojnë me tension 3.3V**. Prandaj duhet pasur kujdes që lidhjet të bëhen në baze të këshillave që janë dhënë më poshtë në mënyrë që mos të vije deri te dëmtimi i pllakës.

Ndërprerësi me buton

Moduli me buton përdoret për të dhënë një komandë MKR1000, përmes shtypjes së butonit. Duhet pasur kujdes që moduli i butonit të lidhet me MKR1000 sipas fotos së treguar më poshtë. Pini i sinjalit (Signal) duhet të lidhet në MKR1000 në pinin të cilin kemi vendosur ta kontrollojmë në kodin që kemi shkruar.

D.m.th. për ta shfrytëzuar kodin e mëposhtëm lidhim

- GND nga moduli në GND të MKR1000
- VCC nga moduli në VCC të MKR1000
- Signal nga moduli në pinin 3 të MKR1000

Në rastin tonë kemi përdorur pinin e tretë të MKR1000 por ju mund të eksperimentoni me secilin prej tyre, gjithashtu kemi përdorur edhe LED-in i cili është i vendosur në pllakën e MKR1000, sikur në shembullin e mëhershëm të MKR1000.

Një sqarim i thjeshtë i kodit rresht pas rreshti do të ishte kështu:

- int led = LED_BUILDIN; deklarimi i një variable në të cilën do ta ruajmë numrin e pinit me të cilin do ta kontrollojmë LED-in.
- int buttonpin = 3; deklarimi i një variable në të cilën do ta ruajmë numrin e pinit përmes të cilit do ta lexojmë gjendjen e butonit.
- int val; deklarimi i një variable ku do ta ruajmë gjendjen e butonit.
- void setup()
 - {

ky funksion përdoret për inicializimin e komponentëve që dëshirojmë ti përdorim gjatë projektit. Ekzekutohet vetëm një herë pasi të fillon ekzekutimin e kodit mikrokontrolleri dhe pasi të përfundohet i gjithë kodi që ka brenda kalon në funksionin void loop();

- }
- pinMode(variabla1,variabla2); ky funksion përdoret për të inicializuar modën e punës së pinit që dëshirojmë ta përdorim, dëshirojmë ta përdorim pinin e caktuar të MKR1000 si hyrje apo si dalje. Po ashtu shohim se funksioni pranon dy parametra, parametri i parë variabla1 është pini që dëshirojmë ta inicializojmë, dhe variabla2 është modi në të cilin dëshirojmë ta inicializojmë INPUT apo OUTPUT.
- void loop()
 - {

ky funksion është pjesa ku mikrokontrolleri ekzekuton kodin në mënyrë të përsëritshme. D.m.th. fillon nga rreshti i parë i funksionit shkon te secili rresht njëri pas tjetrit dhe pasi ta ketë ekzekutuar rreshtin fundit fillon prapë nga rreshti i parë.

- }
- digitalRead(variabla1); ky është një funksion të cilin e përdorim për ta lexuar gjendjen e pinit të caktuar. Parametri variabla1 është numri i pinit të cilin dëshirojmë ta lexojmë. Ky funksion kthen si përgjigje 1 apo 0, TRUE ose FALSE varësisht nga gjendja e pinit, 3.3 Volt apo 0 Volt
- if(kushti)

{

nëse plotësohet kushti që kemi vendosur brenda kllapave të vogla atëherë do të ekzekutohet kodi që është brenda kllapave gjarpërore, përndryshe kodi vazhdon në else

```
}
else
{
```

Nëse nuk plotësohet kushti brena if ekzekutimi i kodit vazhdon këtu.

- }
- digitalWrite(variabla1,variabla2); ky funksion përdoret për të caktuar gjendjen e pinit në
 MKR1000, HIGHT gjendja e pinit do të jetë 1 logjik, dhe LOË gjendja e pinit do të jetë 0 logjike.

```
ButtonSwitch_module
int led = LED BUILTIN; //Define the LED pin
int buttonpin = 3; //Define the push button pin
                        //Define a numeric variable
int val;
void setup()
Ł
 pinMode(led,OUTPUT);
 pinMode(buttonpin, INPUT);
}
void loop()
Ł
 val = digitalRead(buttonpin); // check the state of the button
  if(val==HIGH)
                                 // if button is pressed, turn LED on
  {
    digitalWrite(led, HIGH);
  }
  else
  Ł
    digitalWrite(led,LOW);
  }
}
```

LED-i RGB

LED përdoret si shkurtes për Light Emitting Diode dhe RGB për Red, Green, Blue

RGB LED-i përdoret për të krijuar ngjyra të ndryshme përmes tri ngjyrave bazë, dhe kontrollohet përmes tre pinave të MKR1000. Për tu përshtatur me kodin më poshtë i cili ndez tetë ngjyrat e ndryshme që mund të krijohen duhet lidhur këta pina:

- GREEN nga moduli te pini 2 në MKR1000
- RED nga moduli te pini 1 në MKR1000
- BLUE nga moduli te pini 3 në MKR1000

Dallimi mes dy moduleve më lartë është vetëm nga lloji i komponentës që është përdorur si RGB LED.

Gjithashtu për të bërë test shembullin mund ta shfrytëzoni kodin më poshtë, i cili çdo një sekondë shfaqë një nga tetë ngjyrat që mund të krijohen me RGB LED.

int red_light_pin= 1; int green_light_pin = 2; int blue_light_pin = 3; void setup() { pinMode(red_light_pin, OUTPUT); pinMode(green_light_pin, OUTPUT); pinMode(blue_light_pin, OUTPUT); }

void loop() { RGB_color(255, 0, 0); // Red delay(1000); RGB_color(0, 255, 0); // Green delay(1000); RGB_color(0, 0, 255); // Blue delay(1000); RGB_color(255, 255, 125); // Raspberry delay(1000); RGB_color(0, 255, 255); // Cyan delay(1000); RGB_color(255, 0, 255); // Magenta delay(1000); RGB_color(255, 255, 0); // Yellow delay(1000); RGB_color(255, 255, 255); // White delay(1000); } void RGB_color(int red_light_value, int green_light_value, int blue_light_value)

{ analogWrite(red_light_pin, red_light_value); analogWrite(green_light_pin, green_light_value); analogWrite(blue_light_pin, blue_light_value);

}

Sensori i dritës

Në këtë sensor tensioni analog në pinin SIGNAL ndryshon varësisht nga ndriçimi i jashtëm. Ne do ta matim këtë tension duke shfrytëzuar pinin **A0 të MKR1000** dhe do ta shfaqim në komunikimin serik i cili është i mundur në IDE e Arduinos.

Për ta hapur serial monitorin duhet të shkoni te **Tools > Serial Monitor**, dhe të rregulloni shpejtësinë e komunikimit nëse nuk është 9600 siç është specifikuar në kodë.

```
PhotoResistor
int sensorPin = A0; // select the analog input pin for the photoresistor
void setup() {
   Serial.begin(9600);
}
void loop() [
   Serial.println(analogRead(sensorPin));
   delay(200);
}
```

Sensori i flakës

Shembulli me sensor të flakës mund të bëhet duke shfrytëzuar kodin e mëposhtëm dhe duke lidhur pinat për VCC, GND në vendet përkatëse si dhe **Analog Output në A0 të MKR1000**, ndërsa Digital Output nuk kemi nevojë ta lidhim. Gjithashtu duhet të hapim edhe dritaren për komunikim serik sikur në shembullin e mëhershëm për të lexuar mesazhet e printuara me funksionet për printim.

// lowest and highest sensor readings: const int sensorMin = 0; // sensor minimum const int sensorMax = 1024; // sensor maximum

void setup() {

// initialize serial communication @ 9600 baud:

Serial.begin(9600);

}

void loop() {

// read the sensor on analog AO:

int sensorReading = analogRead(A0);

// map the sensor range (four options):

// ex: 'long int map(long int, long int, long int, long int)'

int range = map(sensorReading, sensorMin, sensorMax, 0, 3);

// range value:

switch (range) {

case 0: // A fire closer than 1.5 feet away. Serial.println("** Close Fire **"); break; case 1: // A fire between 1-3 feet away. Serial.println("** Distant Fire **"); break; case 2: // No fire detected. Serial.println("No Fire"); break; } delay(1); // delay between reads } Sensori i lagështisë dhe temperaturës

Për ta përdorur këtë modul së pari lidhim pinat e tij siç është e specifikuar më lartë. Pastaj duhet ta instalojmë librarinë e gatshme për DHT11 emri i modulit. Për ta instaluar librarinë e sensorit shkojmë te **Tools > Library Manager**, kërkojmë për **DHT11** dhe instalojmë librarinë përkatëse.

Pasi ta instalojmë librarinë tani kemi shembujt përkatës për ta përdorur sensorin, dhe mund ta hapim njërin nga shembujt duke shkuar te : File > Example > DHT sensor library > DHT_unified_sensor.

Pasi ti ndjekim hapat e shënuar më lartë, hapet një dritare e arduinos së bashku me kodin për ta kontrolluar sensorin. Tani duhet ti bëjmë edhe disa ndryshime përfundimtare, e para duhet ti komentojmë të gjitha llojet e sensorëve që nuk jemi duke i përdorur, në mënyrë që kodi të funksionoj vetëm për DHT11, dhe e dyta të shënojmë në kod se ku e kemi lidhur pinin **Signal** të modulit të DHT11.

Detyrë

- Duhet të krijoni një projekt IoT me MKR1000, varet se çka dëshironi të krijoni, dhe çka dëshironi të shfaqni me projektin tuaj. Kjo pjesë duhet të përmbajë lidhjet harduerike të së paku tre moduleve-sensorëve së bashku në MKR1000 dhe kodin për kontrollimin e së paku tre moduleve së bashku. Aplikacioni gjithashtu duhet ta ketë pjesën e konfigurimit dhe monitorimit të të dhënave nga webi.
- 2) Pastaj pasi ta përfundoni pjesën e parë ju duhet që gjithçka që keni bërë më lartë ta dokumentoni në një dokument Word të shkruar. Dokumentimi i punës përfshinë një shpjegim të thjeshtë se çka keni dëshiruar të tregoni me projektin, foto të lidhjeve të sensorëve, kodin që keni shkruar, mënyrën e paraqitjes së rezultateve dhe gjithçka tjetër që mendoni që do ta prezantonte më së miri projektin tuaj.

Përdorimi i Blynk Monitorimi i temperaturës dhe lagështisë së ajrit nëpërmjet telefonit

Blynk është një platformë për zhvilluesit e pajisjeve IoT (Internet of Things). Platforma lejon zhvilluesit të krijojnë aplikacione mobile për të kontrolluar dhe monitoruar pajisjet e tyre të lidhura në internet. Blynk ofron një platformë të lehtë për përdorim dhe një aplikacion mobil për të kontrolluar pajisjet. Përmes Blynk, mund të krijoni ndërfaqe të përshtatshme për pajisjet tuaja të lidhura, të shpërndani komandat dhe të merrni informacion mbi statusin e tyre. Për të përdorur platformën, zhvilluesit përdorin bibliotekat dhe API-të e ofruara nga Blynk për të lidhur pajisjet e tyre me serverat e Blynk.

Më posht do të gjeni një shembull se si mund ta përdorim këtë platformë

Hapeni <u>https://blynk.cloud/</u> dhe krijoni një llogari duke klikuar Create new account.

	В
	Log In
EMAIL	
PASSWORD	
₿	
	Forgot password?
	Log in
	Create new account

Pasi ta keni krijuar një llogari ne Blynk dhe keni konfirmuar emailin , kyçemi në llogarinë e hapur duke e dhënë emailin dhe passwordin.

blynk.cloud/dashboard/login		ণ 🖻
	в	
	Log In	
	EHAIL 🗠 lamirshkurti@gmail.com	
	PASSWORD	
	Forgot password?	
	Log In	
	Create new account	

Pasi te jemi kyçur krijojmë një pajisje duke klikuar tek butoni New Template. Mbushim fushat si Name, Hardware dhe Connection Type dhe klikojmë Done.

$\leftarrow \ \rightarrow$	C ☆ 🔒 blynk.cloud/dashboard/99381/te	emplates		여 🖻 ☆ 🍖 🛪 🛛 🕓 🗄
B	My organization - 1425RL MY TEMPLATES	Templates		+ New Template
800	My Templates	Create New Template		
A	BLUEPRINTS BETA	NAME MKR1000 Use letters, digits and spaces only		
Ø		HARDWARE Arduino	CONNECTION TYPE VIEW	
		DESCRIPTION		
		Description	0/128	
P				
Ø			Cancel Done	
0				
Do				Region: frat Privacy Policy

Pasi është krijuar pajisja do të shfaqet si ne figurën e mëposhtme

$\leftarrow \rightarrow$	C ☆ blynk.cloud/dashboard/99381/te	mplates	아 🖻 🏚 🍖 🖈 🔲 🚺 🕴
В Q	My organization - 1425RL	Templates	+ New Template
000	My Templates	Q. Search Templates	
1	BLUEPRINTS BLUEPRINTS All Blueprints	MKR1000 1 Device	
P			
٩			
\$			
2			Region: fra1 Privacy Policy

Pasi të klikojmë tek pajisja e krijuar do të shfaqet figura si më poshtë:

$\leftarrow \ \rightarrow$	C 🛆 🔒 blynk.cloud/dashboa	ard/99381/templates/200934/info				• 🖻 🛧	🍖 🛪 🖬 🕕 🗄
B Q	MKR1 Ø	000					••• Edit
000	Home Datastreams	Web Dashboard Aut	omations Metadata Even	ts Mobile Dashboard			
<u>í</u>	1 Devices		+ New Device	What's next? 4 of 4 completed.	\sim	Template settings	\$
	Device name	Status	Authtoken			Arduino, WiFi	
	MKR1000	Offline	EbjW - •••• - •••• 🖻			Firmware configuration Template ID and Template Name shou declared at the very top of the firmwa	► Id be re code.
						<pre>#define BLYNK_TEMPLATE_ID "TMPL4 #define BLYNK_TEMPLATE_NAME "NKR</pre>	37EYI-18" 1000"
P							
٢							
<u>نې</u>							
0							Region: fra1 Privacy Policy

Tek regjistri Datastreams krijojmë dy datastream duke klikuar në butonin New Data stream -> Virtual pin sikurse në figurën e mëposhtme.

6	4		MKR1	000										000	Cancel	Save And A
Hom	ie	Data	streams	Web [Dashboard	Automations	Metadat	a Even	ts Mob	ile Dashboard						
Q	Search	datast	ream													+ New Datast
2 Da	tastre	ams														Virtual Pin Enum
		d ¢	Name			Alias		Color	Pin	🗘 Data Type 💠 🐨	Units	Is Raw	0 Min	÷	Max	Location UPGR
11	1	1	Tempe	rature		Temperature			V0	Double		false	0		100	Digital Pin Analog Pin
AIS.		2	Humidi	ity		Humidity			V1	Double		false	0		100	

Pasi kemi krijuar datastreams dhe i kemi ruajtur ato, klikojmë tek regjistri Web Dashboard në anën e djathtë tek pjesa Widget Box zgjedhim dy Gauge si në figurë:

B	MKR1000	*** Cance	Save And Apply
000	Home Datastreams Web D	Dashboard Automations Metadata Events Mobile Dashboard	0
	Widget Box Control of 10 widgets	Device name online S Device Owner Company Name Tag X 2	UPCRADE
	Gauge	Dashboard +	
	42	Last Hour 6 Hours 1 Day 1 Week 1 Month 3 Months Custom Temperature (V0) Humidity (V1)	
FD	0 100	\frown	
Ø	Radial Gauge	98 69	
Ø	42		
2			Region: fra1 Privacy Poli

Gauge Temperature lidhet me datastream-in që e krijuam më lartë pra me V0 kurse Humidity lidhet me datastream-in V1 si në figurat e mëposhtme:

B				
Q	Alg Black	Gauge Settings	Save And Apply	
000	Home	TITLE (OPTIONAL) Temperature		2
	😤 Wid	Datastream	- TRUE O	
Ø	Cauge	emperature (VU) Override Datastream's Min/Max fields LEVEL COLOR Change color based on value	Temperature (vo)	
Ð		-	0 100	
Ô	Radial (
3			Cancel Save	
2			Dealers Frat. Driver	

B Q	4 ¹ 0	Gauge Settings	Save And Apply
888	Home	TITLE (OPTIONAL) Humidity	0
1	Cauge	Datastream Humidity (V1) V C Override Datastream's Min/Max fields LEVEL COLOR Change color based on value	PCRADE
0 (j	Radial C	Cancel Sav	

Dhe ne fund klikojmë tek butoni Save And Apply.

Tani instalohet aplikacioni në telefonin mobil. Pasi ta hapim aplikacionin klikojmë në + në këndin e sipërm të djathtë pastaj klikojmë Manually from template hapet një dritare e re ku do të na shfaqet template-i që e kemi krijuar ne Blynk pasi e zgjedhim klikojmë butonin create si më poshtë

B Blynk +	imes Select Template	\leftarrow Device Name
	MKR1000	
		4-9 0
		MKR1000
Add New Device		
Find devices nearby Find and connect nearby devices		
Scan QR-code Have a QR-code or other number to activate device?		
Quickstart device We will provide you with instructions and firmware code to get it online fast.		
Manually from template Create a new device from existing template		Create

Pastaj klikojmë tek template MKR100 që sapo e krijuam dhe shtojmë me + elementet(kontrollat) të cilat do ti lidhim me Datastream që i krijuam në web tek llogaria në Blynk pra pasi e shtojmë kontrollën Gauge tek settings e kësaj kontrolle e zgjedhim datastream Temperature(V0) dhe tek kontrolla e dytë veprojmë njejt vetëm se e zgjedhim datastream Humidity(V1) si në figurat e mëposhtme

× Developer Mode	← MKR1000	<u>نې</u>	+
Explore Blueprints Blueprint is a pre-built Template that includes a tutorial, a firmware code example, dashboard UI, and everything else you need for a working device.			
My Templates + Long tap on Template will open its settings			
4- 6-			
MKR1000			

dhe në fund pasi ta kemi ngarkuar kodin e më poshtëm në arduino mkr1000 vlerat do të mirën nga sensorët dhe do të dërgohen tek platforma Blynk të cilat pastaj mund ti shikojm nga aplikacioni që e krijuam si në figurën e mëposhtme

Për të funksionuar kodi i mëposhtëm në Arduino MKR1000 duhet instaluar librarinë Blynk dhe DHT11. Pas instalimit të librarive duhet ngarkuar kodin tek pajisja.

DHT dht(DHTPIN, DHTTYPE);

BlynkTimer timer;

Output Serial Monitor ×

31 32

1.0.16 ¥ INSTALL

- 4 C-LE2 Artics MKD1000 -- COME In

× 0 ≡

Para se ta ngarkoni kodin merni tokenin e juaj nga pajisja qe e keni krijuar në platformën blynk, si dhe specifikoni emrin dhe passwordin e WIFI-së që do ta shfrytëzoj pajisja.

B		MKR10	00					
000	Home	Datastreams	Web Dashboard	Automations	Metadata	Events	Mobile Dashboard	
	1 Devices				+ New De	evice V	Vhat's next?	\sim
	Device nar	ne	Status	Authtok	en		or a completed.	
	MKR1000		Offline	EbjW - •				
// Blynk #define #define #define #define	k.h en BLYNK BLYNK BLYNK BLYNK	d _TEMPLATE_ _TEMPLATE_ _AUTH_TOKI _PRINT Ser	_ID "TMPL437 _NAME "MKR100 EN "KOPJONI ⁻ rialUSB	EYI-i8" 00" TOKENIN TU	AJ KETU"			
// from #ifndef #error ' #endif	Blynk BLYNK 'Pleas	.h _TEMPLATE e specify	_ID id"					
#include #include #include #include	e <spi e <wif e <bly e <dht< td=""><td>.h> i101.h> nkSimpleW: .h></td><td>iFiShield101</td><td>.h></td><td></td><td></td><td></td><td></td></dht<></bly </wif </spi 	.h> i101.h> nkSimpleW: .h>	iFiShield101	.h>				
// You s // Go to char aut	should the th[] =	get Auth Project Se BLYNK_AU	Token in the ettings (nut TH_TOKEN;	e Blynk Ap icon).	р.			
// Your // Set p char ssi char pas	WiFi Dasswo Ld[] = Ss[] =	credentia rd to "" "KREN"; "krenkoso	ls. for open netu ova";	works.				
<pre>#define #define //#defir //#defir</pre>	DHTPI DHTTY ne DHT ne DHT	N 2 PE DHT11 TYPE DHT22 TYPE DHT22	// DHT 1: 2 // DHT 2: 1 // DHT 2:	1 2, AM2302, 1, AM2301	AM2321			

```
DHT dht(DHTPIN, DHTTYPE);
BlynkTimer timer;
void sendSensor()
{
 float h = dht.readHumidity();
 float t = dht.readTemperature(); // or dht.readTemperature(true) for Fahrenheit
 if (isnan(h) || isnan(t)) {
   Serial.println("Failed to read from DHT sensor!");
   return;
  }
 // You can send any value at any time.
 // Please don't send more that 10 values per second.
  Blynk.virtualWrite(V0, t);
 Blynk.virtualWrite(V1, h);
}
void setup()
{
 // Debug console
 SerialUSB.begin(9600);
 Blynk.begin(auth, ssid, pass);
 // You can also specify server:
 //Blynk.begin(auth, ssid, pass, "blynk-cloud.com", 80);
 //Blynk.begin(auth, ssid, pass, IPAddress(192,168,1,100), 8080);
 dht.begin();
 // Setup a function to be called every second
 timer.setInterval(1000L, sendSensor);
}
void loop()
{
 Blynk.run();
 // You can inject your own code or combine it with other sketches.
 // Check other examples on how to communicate with Blynk. Remember
 // to avoid delay() function!
 timer.run();
}
```

Dërgimi i të dhënave në bazën e të dhënave nëpërmjet një Ueb API nga pajisja MKR1000

Krijimi i bazës së të dhënave në MySQL

Pasi ta hapim phpMyAdmin në anën e majtë tek paneli klikojmë New sikurse në figurën e mëposhtme

phpMyAdmir	7	
🏡 🗐 🕖 🎲 🤹		
Recent Favorites		
Type to filter these, Enter to search all X]	
	68)	
- Rew		

Pasi të klikojmë na shfaqet pjesa ku duhet shkruajmë emrin e bazës së të dhënave që do ta krijojmë.

← 📑 Server: 12	7.0.0.1						
Databases	📄 SQL	🚯 Status	User accounts	🛋 Export	🖬 Import	🥜 Settings	📗 Replic
Database	es						
🕞 Create data	abase 😡						
upzfshk_sens	ors	utf8mb4_	general_ci	♥ Creat	e		

Pasi ta shkruajmë emrin e bazës së të dhënave klikojmë Create dhe do të shohim bazën e të dhënave të krijuar.

phpMyAdmin	← 🖬 Server: 127.0.0.1 » 🕤 Database: upzfshk_sensors
<u>Ω ≣</u> 🥹 🗊	M Structure 🗐 SQL 🔍 Search i Query 🚍 Export 🖼 Import
Recent Favorites Type to filter these, Enter to search all X	▲ No tables found in database.
digital_signage_new upzfshk_sensors	Create table
€-0 €-0	Name: Number of columns: 4

Tani në anën e djathtë poshtë create table tek Name shkruajmë emrin e tabelës që do ta krijojmë psh dataset dhe klikojmë butonin Go.

Pasi krijohet tabela dataset i shtojmë fushat sikurse në figurën e mëposhtme, pra tabela do ta ketë këtë strukturë:

🔳 Br	owse 🛃 🤅	Structure	SQL	🔍 Sea	rch	👫 Insert	E:	xport	🖶 Imp	ort 🔳	Privileges	Þ	Operation	s	💿 Tra
	Table structur	e	Relation v	iew											
#	Name	Туре	Collation	Attributes	Null	Default		Comme	nts Ext	ra	Acti	on			
□ 1	id 🔑	int(11)			No	None			AU	TO_INCREM	MENT 🥜 C	hange	e 🥥 Drop	∇	More
□ 2	temperature	float			No	None					Ø 0	hange	e 🥥 Drop	V	More
3	humidity	float			No	None					Ø 0	hange	e 🥥 Drop	∇	More
4	date	datetime			No	current_time	estamp()				Ø 0	hange	e 🥥 Drop	∇	More
5	deviceid	int(11)			No	None					<i>2</i> C	hange	e 🤤 Drop	Ţ	More
t_	Check al	l With	selected:	Browse	6	ዖ Change	😂 Drop	ا 炎 د	Primary	🔟 Uniq	ue 🖉 I	ndex	📺 Fullte	ext	🐴 A

Pasi krijojmë bazën e të dhënave dhe tabelën dataset e krijojmë Ueb API duke krijuar fajllin index.php i cili do të ketë këtë përmbajtje:

php</td
// Lidhja me bazën e të dhënave \$host = "localhost"; \$username = "shkruani emrin e userit në databazë"; \$password = "shkruani passwordin e userit"; \$database = "shkruani emrin e databazës";
<pre>\$connection = new mysqli(\$host, \$username, \$password, \$database);</pre>
<pre>// Kontrolloni lidhjen if (\$connection->connect_error) { die("Lidhja dështoi: " . \$connection->connect_error); }</pre>
<pre>\$temperature = isset(\$_REQUEST['temperature']) ? \$_REQUEST['temperature'] : null \$humidity = isset(\$_REQUEST['humidity']) ? \$_REQUEST['humidity'] : null; \$deviceid = isset(\$_REQUEST['deviceid']) ? \$_REQUEST['deviceid'] : null;</pre>
// Merrni të dhënat nga POST request \$data = json_decode(file_get_contents("php://input"), true);
// Kryerja e validimeve if (isset(\$temperature) && isset(\$humidity) && isset(\$deviceid)) { //if (isset(\$data['temperature']) && isset(\$data['humidity']) && isset(\$data['deviceid'])) {

```
$query = "INSERT INTO dataset (temperature, humidity, deviceid) VALUES (?, ?,
?)";
   $statement = $connection->prepare($query);
     $statement->bind_param("ddi", $data['temperature'], $data['humidity'],
$data['deviceid']);
 $statement->bind param("ddi", $temperature, $humidity, $deviceid);
    // Kryeni query
   if ($statement->execute()) {
        echo "Të dhënat janë vedosur me sukses!";
    } else {
        echo "Gabim gjatë futjes së të dhënave: " . $statement->error;
   // Mbyllni deklaratën dhe lidhjen me bazën e të dhënave
   $statement->close();
   $connection->close();
} else {
    echo "Të dhënat nuk janë në formatin e duhur.";
```

Tani do të tregojmë mënyrën e dërgimit të të dhënave nga pajisja MKR100 tek baza e të dhënave.

Hapim Arduino IDE dhe shkruajmë kodin e mëposhtëm: Mos harroni ta shkruani SSID dhe Passwordin e wifi-së në të cilin do të lidhet pajisja, gjithashtu edhe serverin ku do të dërgohen të dhënat i cili mund te jete localhost apo një server në internet.

```
#include <WiFi101.h> // for MKR1000
#include "DHT.h"
#include <Wire.h>
#define DHTPIN 2
#define DHTTYPE DHT11
DHT dht(DHTPIN, DHTTYPE);
char ssid[] = "KREN"; // network to join
char pass[] = "krenkosova"; // password for wifi network
int status = WL_IDLE_STATUS;
char server[] = "upz-fshk.online"; // server URL
String postData;
```

```
String postVariable = "depth=";
WiFiClient client;
void setup() {
 // Start serial connection for feedback
 Serial.begin(9600);
 dht.begin();
 // Connect to WiFi
 while (status != WL CONNECTED) {
   Serial.print("Attempting to connect to: ");
   Serial.println(ssid);
   status = WiFi.begin(ssid, pass);
   delay(10000);
                                          // wait 10 sec for connection
  }
 printWiFiStatus();
}
void loop() {
 // Readings
 int depth = 500;
 int bottleId = 11;
 postData = postVariable + depth;
 // Connect to php script at port 80
 if (client.connect(server, 80)) {
   Serial.println("Connected to server.");
   int temp = dht.readTemperature();
    int hum = dht.readHumidity();
    client.println("POST
/index.php?temperature="+String(temp)+"&humidity="+String(hum)+"&deviceid=1
HTTP/1.1");
   client.print("Host: ");
    client.println(server);
   client.println("User-Agent: ArduinoWiFi/1.1");
    client.println("Connection: close");
    client.println("Content-Type: application/x-www-form-urlencoded;");
    client.print("Content-Length: ");
    String postEntity = String("");
```

```
client.println(postEntity.length());
    client.println();
    client.println(postEntity);
   Serial.println("Data are saved.");
   delay(5000);
  } else {
   Serial.println("Failed to connect to server.");
  }
  if (client.connected()) {
   client.stop();
  }
 Serial.println(postData);
 delay(3000);
}
void printWiFiStatus() {
 // print the SSID of the network you're attached to:
 Serial.print("SSID: ");
 Serial.println(WiFi.SSID());
 // print your board's IP address:
  IPAddress ip = WiFi.localIP();
 Serial.print("IP Address: ");
 Serial.println(ip);
 // print your subnet mask:
  IPAddress subnet = WiFi.subnetMask();
 Serial.print("NETMASK: ");
 Serial.println();
 // print your gateway address:
  IPAddress gateway = WiFi.gatewayIP();
 Serial.print("GATEWAY: ");
 Serial.println(gateway);
 // print the received signal strength:
  long rssi = WiFi.RSSI();
 Serial.print("signal strength (RSSI):");
 Serial.print(rssi);
  Serial.println(" dBm");
```

}

Kodin e ngarkojmë tek Arduino MKR100 i cili do të ketë të lidhur sensorin DHT11 për matjen e temperaturës dhe lagështisë së ajrit.

Pasi kodi ngarkohet tek pajisja MKR1000. Të dhënat e marura nga sensori do të regjistrohen në bazën e të dhënave tek tabela dataset.

Marrja e të dhënave nga baza e të dhënave nëpërmjet një Ueb API dhe komandimi i pajisjes MKR1000 nga të dhënat e marura

Pasi ta hapim phpMyAdmin në anën e majtë tek databaza kemi krijuar tabelën led sikurse në figurën e mëposhtme.

phpMuAdmin - 🗐 Server: localhost:3306 » 🝵 Database: upzfshk_sensors » 🐻 Table: led			
<u>∩</u> @	🗐 Browse 🧗 Structure 📘 S	QL 🔍 Search 👫 Inser	rt 🔜 Export 🗟 Import 🥜 Operations
Recent Favorites	Table structure	n view	
information scheme	# Name Type Collation Attribution	utes Null Default Comments	Extra Action
upzfshk_sensors	🗆 1 id 🔑 int(11)	No None	AUTO_INCREMENT 🥜 Change 🤤 Drop More
	2 data int(11)	No None	🥜 Change 🤤 Drop More
t - ↓ dataset t - ↓ led	← Check all With selected	l: 📊 Browse 🥜 Change	🥥 Drop 🔑 Primary 🔃 Unique <table-cell></table-cell>

Tabela ka dy fusha id dhe data. Në data do të ruajmë vlerën led-it 1 ose 0 e cila korrespondon 1 me ndezur dhe 0 e fikur.

Pasi krijojmë tabelën led e krijojmë Ueb API në fajllin index.php ekzistues duke shtuar dy funksionalitete të reja për marrjen e vlerës së data nga tabela led dhe shfaqjen e saj si json dhe funksionaliteti i dytë i cili bënë update vlerën e data të led-it. Fajlli index.php do të ketë këtë përmbajtje:

```
<?php
// Lidhja me bazën e të dhënave
$host = "localhost";
$username = "user";
$password = "password";
$database = "upzfshk_sensors";
$connection = new mysqli($host, $username, $password, $database);
// Kontrolloni lidhjen
if ($connection->connect_error) {
    die("Lidhja dështoi: " . $connection->connect_error);
}
$temperature = isset($_REQUEST['temperature']) ? $_REQUEST['temperature'] : null;
$humidity = isset($_REQUEST['humidity']) ? $_REQUEST['humidity'] : null;
$deviceid = isset($_REQUEST['led']) ? $_REQUEST['led'] : null;
$ledValue = isset($_REQUEST['ledValue']) ? $_REQUEST['ledValue'] : null;
```

```
// Merrni të dhënat nga POST request
$data = json_decode(file_get_contents("php://input"), true);
// Kryerja e validimeve
if (isset($temperature) && isset($humidity) && isset($deviceid)) {
//if (isset($data['temperature']) && isset($data['humidity']) &&
isset($data['deviceid'])) {
    $query = "INSERT INTO dataset (temperature, humidity, deviceid) VALUES (?, ?,
?)";
    $statement = $connection->prepare($query);
     $statement->bind_param("ddi", $data['temperature'], $data['humidity'],
$data['deviceid']);
 $statement->bind_param("ddi", $temperature, $humidity, $deviceid);
    // Kryeni query
    if ($statement->execute()) {
        echo "Të dhënat janë vedosur me sukses!";
    } else {
        echo "Gabim gjatë futjes së të dhënave: " . $statement->error;
    // Mbyllni deklaratën dhe lidhjen me bazën e të dhënave
    $statement->close();
    $connection->close();
}else if(isset($ledValue)){
    $q = mysqli query($connection,"select * from led ORDER BY `id` ASC");
                $data['rows'] = array();
                while($r = mysqli_fetch_array($q))
                    $arr = array();
                    $arr["id"] = $r['id'];
                    $arr["data"] = $r['data'];
                    array_push($data["rows"], $arr);
                $veri = json_encode($data["rows"]);
                echo $veri;
                //echo $data["rows"][0]["data"];//$veri;
```

```
// Kryerja e validimeve
if (isset($ledInsertValue)) {
    $query = "UPDATE led SET data = ?";
    $statement = $connection->prepare($query);
    $statement->bind param("i", $ledInsertValue);
    // Kryeni query
    if ($statement->execute()) {
        echo "Të dhënat janë vedosur me sukses!";
    } else {
        echo "Gabim gjatë futjes së të dhënave: " . $statement->error;
    // Mbyllni deklaratën dhe lidhjen me bazën e të dhënave
    $statement->close();
    $connection->close();
else {
    echo "Të dhënat nuk janë në formatin e duhur.";
?>
```

Gjithashtu kemi krijuar edhe një fajll led.html i cili bënë update vlerën e data tek tabela led. Fajlli led.html ka ketë përmbajtje:

```
<!DOCTYPE html>
<html lang="en">
<html lang="en"</html lang="lang"
<html lang="lan
```

Tani do të tregojmë mënyrën e marrjes së të të dhënave nga databaza dhe ndezjen apo fikjen e ledit me pajisjen MKR100 duke u bazuar në vlerat e marura nga databaza.

Hapim Arduino IDE dhe shkruajmë kodin e mëposhtëm: Mos harroni ta shkruani SSID dhe Passwordin e wifi-së në të cilin do të lidhet pajisja, gjithashtu edhe serverin ku do të dërgohen të dhënat i cili mund te jete localhost apo një server në internet.

```
#include <WiFi101.h> // for MKR1000
char ssid[] = "KREN"; // your network SSID (name)
char pass[] = "krenkosova"; // your network password (use for WPA, or use as
key for WEP)
int ledPin = 2;
int status = WL_IDLE_STATUS;
//IPAddress server(74,125,232,128); // numeric IP for Google (no DNS)
char server[] = "upz-fshk.online"; // name address for Google (using DNS)
String teksti = "";
WiFiClient client;
void setup() {
 //Initialize serial and wait for port to open:
 Serial.begin(9600);
 pinMode(ledPin, OUTPUT);
 while (!Serial) {
   ; // wait for serial port to connect. Needed for native USB port only
```

```
}
 // attempt to connect to Wifi network:
 while (status != WL_CONNECTED) {
    Serial.print("Attempting to connect to SSID: ");
    Serial.println(ssid);
    status = WiFi.begin(ssid, pass);
    // wait 10 seconds for connection:
    delay(10000);
  }
  Serial.println("Connected to wifi");
  printWifiStatus();
 lidhuPerseri();
}
void loop() {
 while (client.available()) {
    char c = client.read();
    String txt = String(c);
    teksti += txt;
   // Serial.print(c);
   Serial.write(c);
  }
  if (!client.connected()) {
   Serial.println();
   // client.stop();
    Serial.println(teksti);
```

```
// Gjej fillimin dhe fundin e pjesës JSON
    int json_start = teksti.indexOf("[");
    int json_end = teksti.indexOf("]", json_start) + 1;
    // Nxerrni pjesën JSON nga përgjigja HTTP
    String json_data = teksti.substring(json_start, json_end);
   // Printoni pjesën JSON në Serial Monitor
   Serial.print("JSON data: ");
   Serial.println(json_data);
    int data_start = json_data.indexOf("\"data\":\"") + 8;
    int data_end = json_data.indexOf("\"", data_start);
    String data_value = json_data.substring(data_start, data_end);
   // Printoni vlerën e "data" në Serial Monitor
    Serial.print("Data value: ");
   Serial.println(data_value);
    if (data value == "1") {
        digitalWrite(ledPin, HIGH);
    }
    if (data_value == "0") {
   digitalWrite(ledPin, LOW);
    }
   // do nothing forevermore:
   teksti = "";
   // while (true);
    delay(3000);
   lidhuPerseri();
 }
void lidhuPerseri(){
 Serial.println("\nStarting connection to server...");
 // if you get a connection, report back via serial:
  if (client.connect(server, 80)) {
   Serial.println("connected to server");
```

}

```
// Make a HTTP request:
    client.println("GET /index.php?led HTTP/1.1");
    client.print("Host: ");
    client.println(server);
    client.println("Connection: close");
    client.println();
 }
}
void printWifiStatus() {
 // print the SSID of the network you're attached to:
  Serial.print("SSID: ");
 Serial.println(WiFi.SSID());
  // print your board's IP address:
  IPAddress ip = WiFi.localIP();
  Serial.print("IP Address: ");
  Serial.println(ip);
  // print the received signal strength:
  long rssi = WiFi.RSSI();
  Serial.print("signal strength (RSSI):");
 Serial.print(rssi);
 Serial.println(" dBm");
}
```

Përdorimi i MKR 1000 si një Ueb Server

Ueb Serveri do të përdoret si një ndërfaqe për bordin tone MKR100, ku do të krijojmë dy butona për të ndezur ose fikur nga distanca një LED dhe shkuarjen e tekstit në mënyrë dinamike në një LCD ekran nga uebi.

Skema e lidhjes së LCD dhe LED-it:

Sigurohuni që keni instaluar bibliotekat WiFi101 dhe LiquidCrystal

Kodi në Arduino:

```
#include <SPI.h>
#include <WiFi101.h>
#include <LiquidCrystal.h>
LiquidCrystal lcd(0, 1, 2, 3, 4, 5);
char ssid[] = "KREN"; // your network SSID (name) between the " "
char pass[] = "krenkosova"; // your network password between the " "
int keyIndex = 0; // your network key Index number (needed only
for WEP)
int status = WL_IDLE_STATUS; //connection status
WiFiServer server(80); //server socket
```

```
WiFiClient client = server.available();
```

```
int ledPin = 6;
String teksti = "";
void setup() {
  Serial.begin(9600);
 pinMode(ledPin, OUTPUT);
 while (!Serial);
 lcd.begin(16, 2); // If you have 20×4 LCD user (20,4)
  enable_WiFi();
  connect WiFi();
 server.begin();
 printWifiStatus();
}
void loop() {
 client = server.available();
 if (client) {
   printWEB();
  }
}
void printWifiStatus() {
  // print the SSID of the network you're attached to:
  Serial.print("SSID: ");
  Serial.println(WiFi.SSID());
 // print your board's IP address:
  IPAddress ip = WiFi.localIP();
  Serial.print("IP Address: ");
  Serial.println(ip);
  // print the received signal strength:
  long rssi = WiFi.RSSI();
  Serial.print("signal strength (RSSI):");
  Serial.print(rssi);
  Serial.println(" dBm");
 Serial.print("To see this page in action, open a browser to http://");
 Serial.println(ip);
}
```

```
void enable_WiFi() {
  String fv = WiFi.firmwareVersion();
  if (fv < "1.0.0") {
    Serial.println("Please upgrade the firmware");
  }
}
void connect WiFi() {
  // attempt to connect to Wifi network:
 while (status != WL CONNECTED) {
    Serial.print("Attempting to connect to SSID: ");
    Serial.println(ssid);
    // Connect to WPA/WPA2 network. Change this line if using open or WEP
network:
    status = WiFi.begin(ssid, pass);
    // wait 10 seconds for connection:
    delay(10000);
 }
}
void printWEB() {
  if (client) {
                                              // if you get a client,
    Serial.println("new client");
                                             // print a message out the serial port
    String currentLine = "";
                                             // make a String to hold incoming data from the client
    while (client.connected()) {
                                             // loop while the client's connected
      if (client.available()) {
                                              // if there's bytes to read from the client,
        char c = client.read();
                                              // read a byte, then
        String txt = String(c);
        teksti += txt;
        Serial.write(c);
                                             // print it out the serial monitor
        if (c == '\n') {
                                              // if the byte is a newline character
          // if the current line is blank, you got two newline characters in a row.
          // that's the end of the client HTTP request, so send a response:
          if (currentLine.length() == 0) {
           // HTTP headers always start with a response code (e.g. HTTP/1.1 200 OK)
            // and a content-type so the client knows what's coming, then a blank line:
            client.println("HTTP/1.1 200 OK");
            client.println("Content-type:text/html");
            client.println();
```

```
//create the buttons
            client.print("Click <a href=\"/H\">here</a> turn the LED on<br>");
            client.print("Click <a href=\"/L\">here</a> turn the LED
off<br><br>");
            // Add input field
            client.print("<form action=\"/text\" method=\"get\">");
            client.print("Text: <input type=\"text\" name=\"inputText\"><br>");
            client.print("<input type=\"submit\" value=\"Submit\">");
            client.print("</form>");
            // The HTTP response ends with another blank line:
            client.println();
            // break out of the while loop:
            break;
          }
          else { // if you got a newline, then clear currentLine:
            currentLine = "";
          }
        }
        else if (c != '\r') { // if you got anything else but a carriage return character,
          currentLine += c; // add it to the end of the currentLine
        }
        Serial.println(currentLine);
        if (currentLine.endsWith("GET /H")) {
        digitalWrite(ledPin, HIGH);
        }
        if (currentLine.endsWith("GET /L")) {
        digitalWrite(ledPin, LOW);
        }
        // Check if the request includes text input
        if (currentLine.indexOf("GET /text?inputText=") != -1) {
          int startPos = currentLine.indexOf("GET /text?inputText=") + 20;
          int endPos = currentLine.indexOf("HTTP");
          String inputText = currentLine.substring(startPos, endPos);
          Serial.println("Input Text: " + inputText);
          // Display the input text on the LCD
          lcd.clear();
          lcd.setCursor(0, 0);
          lcd.print("Teksti i shkruar: ");
          lcd.setCursor(0, 1);
          lcd.print(inputText);
        }
```

```
}
}
Serial.println("lamir -" + teksti);
// close the connection:
    client.stop();
    Serial.println("client disconnected");
}
```

Pasi të kemi ngarkuar me sukses kodin në MKR1000, hapni Serial Monitorin dhe pas lidhjes me wifi do të ju shfaqet IP-adresa e pajisjes. Merrni IP-adresën dhe vendosni në browser dhe do të ju shfaqet dritarja ku mund të ndizni dhe fikni LED-in dhe shkruani tekstin i cili do të shfaqet në display.

Përdorimi i JWT(JSON Web Token) për të siguruar shkëmbimin e të dhënave në mënyrë të sigurt

Një bibliotekë e thjeshtë për të koduar dhe deshifruar JSON Web Tokens (JWT) në PHP mund ta gjeni në këtë link: <u>https://github.com/firebase/php-jwt</u>

Për ta përdorur këtë librari tek fajlli ku kemi punuar më heret index.php shtojmë këtë kod:

require "php-jwt/src/JWT.php";

require "php-jwt/src/Key.php";

Së pari gjenerojmë një token për ta shfrytëzuar më pastaj nga Arduino MKR1000 për ti dërtuar të dhënat së bashku me tokenin që do ta gjenerojmë:

```
<?php
require 'php-jwt/src/JWT.php';
require 'php-jwt/src/Key.php';
use Firebase\JWT\JWT;
use Firebase\JWT\Key;
$secretKey = 'sekreti-lamir';
$tokenData = [
    'id' => '123321'
];
// $tokenData = [
       'data' => [
           'id' => '123321'
          // 'data' => time(),
          // 'iat': 1703288812,
          // 'exp': 1703383200
// 1;
// $key = base64_decode($secretKey);
$jwt = JWT::encode($tokenData, $secretKey, 'HS256');
$decoded = JWT::decode($jwt, new Key($secretKey, 'HS256'));
print_r($decoded);
echo json_encode(['token' => $jwt]);
?>
```

Tani këtë token e shfrytëzojmë në kodin e shkruar në arduino:

```
#include <WiFi101.h> // for MKR1000
#include "DHT.h"
#include <Wire.h>
#define DHTPIN 2
#define DHTTYPE DHT11
DHT dht(DHTPIN, DHTTYPE);
                 "KREN"; // network to join
char ssid[] =
char pass[] = "krenkosova"; // password for wifi network
int status = WL_IDLE_STATUS;
char server[] = "upz-fshk.online"; // server URL
String token =
"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpZCI6IjEyMzMyMSJ9.dASvDkCc-
JeOJjUObZWgN_IyX1LDUZJRMnLK3FhyaOk";
String postData;
String postVariable = "depth=";
WiFiClient client;
void setup() {
 // Start serial connection for feedback
 Serial.begin(9600);
  dht.begin();
 // Connect to WiFi
 while (status != WL CONNECTED) {
   Serial.print("Attempting to connect to: ");
   Serial.println(ssid);
   status = WiFi.begin(ssid, pass);
   delay(10000);
                                        // wait 10 sec for connection
  }
 printWiFiStatus();
}
```

```
void loop() {
 // Readings
  int depth = 500;
  int bottleId = 11;
  postData = postVariable + depth;
 // Connect to php script at port 80
  if (client.connect(server, 80)) {
    Serial.println("Connected to server.");
    int temp = dht.readTemperature();
    int hum = dht.readHumidity();
    client.println("POST
/index.php?temperature="+String(temp)+"&humidity="+String(hum)+"&deviceid=1&token
="+String(token)+" HTTP/1.1");
    client.print("Host: ");
    client.println(server);
    client.println("User-Agent: ArduinoWiFi/1.1");
    client.println("Connection: close");
    client.println("Content-Type: application/x-www-form-urlencoded;");
    client.print("Content-Length: ");
    String postEntity = String("");
    client.println(postEntity.length());
    client.println();
    client.println(postEntity);
    Serial.println("Data are saved.");
    delay(5000);
  } else {
    Serial.println("Failed to connect to server.");
  }
  if (client.connected()) {
    client.stop();
  }
  Serial.println(postData);
 delay(3000);
}
void printWiFiStatus() {
```

```
// print the SSID of the network you're attached to:
Serial.print("SSID: ");
Serial.println(WiFi.SSID());
```

```
// print your board's IP address:
IPAddress ip = WiFi.localIP();
Serial.print("IP Address: ");
Serial.println(ip);
```

```
// print your subnet mask:
IPAddress subnet = WiFi.subnetMask();
Serial.print("NETMASK: ");
Serial.println();
```

```
// print your gateway address:
IPAddress gateway = WiFi.gatewayIP();
Serial.print("GATEWAY: ");
Serial.println(gateway);
```

```
// print the received signal strength:
long rssi = WiFi.RSSI();
Serial.print("signal strength (RSSI):");
Serial.print(rssi);
Serial.println(" dBm");
```

}

Ndërsa fajlli index.php duhet të jetë si më poshtë:

<?php

```
require "php-jwt/src/JWT.php";
require "php-jwt/src/Key.php";
use Firebase\JWT\JWT;
use Firebase\JWT\Key;
// Lidhja me bazën e të dhënave
$host = "localhost";
$username = "";
$password = "";
$database = "upzfshk_sensors";
```

\$connection = new mysqli(\$host, \$username, \$password, \$database);

```
// Kontrolloni lidhjen
if ($connection->connect_error) {
    die("Lidhja dështoi: " . $connection->connect error);
$secretKey = "sekreti-lamir";
$token = $_REQUEST["token"];
$sekreti id = "123321";
$temperature = isset($_REQUEST["temperature"]) ? $_REQUEST["temperature"] : null;
$humidity = isset($_REQUEST["humidity"]) ? $_REQUEST["humidity"] : null;
$ deviceid = isset($_REQUEST["deviceid"]) ? $_REQUEST["deviceid"] : null;
$ledValue = isset($_REQUEST["led"]) ? $_REQUEST["led"] : null;
$ledInsertValue = isset($ REQUEST["ledValue"]) ? $ REQUEST["ledValue"] : null;
// Merrni të dhënat nga POST request
//$data = json decode(file get contents("php://input"), true);
// Kryerja e validimeve
if (isset($temperature) && isset($humidity) && isset($deviceid)) {
    //if (isset($data['temperature']) && isset($data['humidity']) &&
isset($data['deviceid'])) {
    try {
        //echo $token . " " . $secretKey;
        // Verifikoni tokenin duke përdorur çelësin e fshehur
        $decoded = JWT::decode($token, new Key($secretKey, "HS256"));
        $dataToInsert = $decoded->id;
        //echo "lsh-" . $dataToInsert;
        if ($dataToInsert == $sekreti id) {
            $query =
                "INSERT INTO dataset (temperature, humidity, deviceid) VALUES (?,
?, ?)";
            $statement = $connection->prepare($query);
            $statement->bind_param("ddi", $temperature, $humidity, $deviceid);
            // Kryeni query
            if ($statement->execute()) {
                echo "Të dhënat janë vedosur me sukses!";
            } else {
                echo "Gabim gjatë futjes së të dhënave: " . $statement->error;
```

```
$statement->close();
            $connection->close();
    } catch (Exception $e) {
        // Nëse ndodh një gabim gjatë verifikimit, tokeni është i pavlefshëm
        echo json encode([
            "message" =>
                "Tokeni i pavlefshëm ose ka ndodhur një gabim gjatë
verifikimit.",
        ]);
    }
} elseif (isset($ledValue)) {
    $q = mysqli_query($connection, "select * from led ORDER BY `id` ASC");
    $data["rows"] = [];
    while ($r = mysqli_fetch_array($q)) {
        $arr = [];
        $arr["id"] = $r["id"];
        $arr["data"] = $r["data"];
        array_push($data["rows"], $arr);
    $veri = json encode($data["rows"]);
    echo $veri;
    //echo $data["rows"][0]["data"];//$veri;
// Kryerja e validimeve
if (isset($ledInsertValue)) {
    $query = "UPDATE led SET data = ?";
    $statement = $connection->prepare($query);
    $statement->bind_param("i", $ledInsertValue);
    // Kryeni query
    if ($statement->execute()) {
        echo "Të dhënat janë vedosur me sukses!";
    } else {
        echo "Gabim gjatë futjes së të dhënave: " . $statement->error;
    }
    // Mbyllni deklaratën dhe lidhjen me bazën e të dhënave
    $statement->close();
    $connection->close();
 else {
```

echo "Të dhënat nuk janë në formatin e duhur.";

} ?>